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A Proof of Theorem 1

A.1 Average direct effect under d = 1 conditional on D = 1

and M(1) = 0

In the following, we prove that θ1,01 (1) = E[Y1(1, 0) − Y1(0, 0)|D = 1,Mi(1) =

0] = E[Y1 − Q00(Y0)|D = 1,M = 0]. Using the observational rule, we obtain

E[Y1(1, 0)|D = 1,M(1) = 0] = E[Y1|D = 1,M = 0]. Accordingly, we have to show

that E[Y1(0, 0)|D = 1,M(1) = 0] = E[Q00(Y0)|D = 1,M = 0] to finish the proof.

Denote the inverse of h(d,m, t, u) by h−1(d,m, t; y), which exists because of the

strict monotonicity required in Assumption 1. Under Assumptions 1 and 3a, the

conditional potential outcome distribution function equals

FYt(d,0)|D=1,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 1,M = 0, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 0, T = t),

A3a
= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 0),

A3a
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 1,M = 0),

= FUt′ |10(h
−1(d,m, t; y)),

(A.1)

for d, t, t′ ∈ {0, 1}. We use these quantities in the following.
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First, evaluating FY1(0,0)|D=1,M=0(y) at h(0, 0, 1, u) gives

FY1(0,0)|D=1,M=0(h(0, 0, 1, u)) = FUt|10(h
−1(0, 0, 1;h(0, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,0)|D=1,M=0(q) to both sides, we have

h(0, 0, 1, u) = F−1Y1(0,0)|D=1,M=0(FUt|10(u)). (A.2)

Second, for FY0(0,0)|D=1,M=0(y) we have

F−1Ut|10(FY0(0,0)|D=1,M=0(y)) = h−1(0, 0, 0; y). (A.3)

Combining (A.2) and (A.3) yields,

h(0, 0, 1, h−1(0, 0, 0; y)) = F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(y). (A.4)

Note that h(0, 0, 1, h−1(0, 0, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under non-treatment with-

out the mediator. Accordingly, E[F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(Y0)|D = 1,M =

0] = E[Y1(0, 0)|D = 1,M = 0]. We can identify FY0(0,0)|D=1,M=0(y) under Assump-

tion 2, but we cannot identify FY1(0,0)|D=1,M=0(y). However, we show in the follow-

ing that we can identify the overall quantile-quantile transform F−1Y1(0,0)|D=1,M=0 ◦

FY0(0,0)|D=1,M=0(y) under the additional Assumption 3b.

Under Assumptions 1 and 3b, the conditional potential outcome distribution

function equals

FYt(d,0)|D=0,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 0,M = 0, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 0, T = t),

A3b
= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 0),

A3b
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 0,M = 0),

= FUt′ |00(h
−1(d,m, t; y)),

(A.5)
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for d, t, t′ ∈ {0, 1}. We repeat similar steps as above. First, evaluating FY1(0,0)|D=0,M=0(y)

at h(0, 0, 1, u) gives

FY1(0,0)D=0,M=0(h(0, 0, 1, u)) = FUt|00(h
−1(0, 0, 1;h(0, 0, 1, u))) = FUt|00(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,0)|D=0,M=0(q) to both sides, we have

h(0, 0, 1, u) = F−1Y1(0,0)|D=0,M=0(FUt|00(u)). (A.6)

Second, for FY0(0,0)|D=0,M=0(y) we have

F−1Ut|00(FY0(0,0)|D=0,M=0(y)) = h−1(0, 0, 0; y). (A.7)

Combining (A.6) and (A.7) yields,

h(0, 0, 1, h−1(0, 0, 0; y)) = F−1Y1(0,0)|D=0,M=0 ◦ FY0(0,0)|D=0,M=0(y). (A.8)

The left sides of (A.4) and (A.8) are equal. In contrast to (A.4), (A.8) con-

tains only distributions that can be identified from observable data. In partic-

ular, FYt(0,0)|D=0,M=0(y) = Pr(Yt(0, 0) ≤ y|D = 0,M = 0) = Pr(Yt ≤ y|D =

0,M = 0). Accordingly, we can identify F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(y) by

Q00(y) ≡ F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(y).

Parsing Y0 through Q00(·) in the treated group without mediator gives

E[Q00(Y0)|D = 1,M = 0]

= E[F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(Y0)|D = 1,M = 0],

= E[F−1Y1(0,0)|D=0,M=0 ◦ FY0(0,0)|D=0,M=0(Y0(1, 0))|D = 1,M = 0],

A1,A3b
= E[h(0, 0, 1, h−1(0, 0, 0;Y0(1, 0)))|D = 1,M = 0],

A2
= E[h(0, 0, 1, h−1(0, 0, 0;Y0(0, 0)))|D = 1,M = 0],

A1,A3a
= E[F−1Y1(0,0)|D=1,M=0 ◦ FY0(0,0)|D=1,M=0(Y0(0, 0))|D = 1,M = 0],

= E[Y1(0, 0)|D = 1,M = 0] = E[Y1(0, 0)|D = 1,M(1) = 0],

(A.9)
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which has data support because of Assumption 4a.

A.2 Quantile direct effect under d = 1 conditional on D = 1

and M(1) = 0

In the following, we prove that

θ1,01 (q, 1) = F−1Y1(1,0)|D=1,M(1)=0(q)− F
−1
Y1(0,0)|D=1,M(1)=0(q),

= F−1Y1|D=1,M=0(q)− F
−1
Q00(Y0)|D=1,M=0(q).

For this purpose, we have to show that

FY1(1,0)|D=1,M(1)=0(y) = FY1|D=1,M=0(y) and (A.10)

FY1(0,0)|D=1,M(1)=0(y) = FQ00(Y0)|D=1,M=0(y), (A.11)

which is sufficient to show that the quantiles are also identified. We can show (A.10)

using the observational rule FY1(1,0)|D=1,M(1)=0(y) = FY1|D=1,M=0(y) = E[1{Y1 ≤

y}|D = 1,M = 0], with 1{·} being the indicator function.

In analogy to (A.9), we obtain

FQ00(Y0)|D=1,M=0(y)

= E[1{Q00(Y0) ≤ y}|D = 1,M = 0],

= E[1{F−1Y1|D=0,M=0 ◦ FY0|D=0,M=0(Y0) ≤ y}|D = 1,M = 0],

= E[1{Y1(0, 0) ≤ y}|D = 1,M = 0],

= FY1(0,0)|D=1,M(1)=0(y),

(A.12)

which proves (A.11).
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A.3 Average direct effect under d = 0 conditional on D = 0

and M(0) = 0

In the following, we show that θ0,01 (0) = E[Y1(1, 0) − Y1(0, 0)|D = 0,M(0) =

0] = E[Q10(Y0) − Y1|D = 0,M = 0]. Using the observational rule, we obtain

E[Y1(0, 0)|D = 0,M(0) = 0] = E[Y1|D = 0,M = 0]. Accordingly, we have to show

that E[Y1(1, 0)|D = 0,M(0) = 0] = E[Q10(Y0)|D = 0,M = 0] to finish the proof.

First, we use (A.5) to evaluate FY1(1,0)|D=0,M=0(y) at h(1, 0, 1, u)

FY1(1,0)|D=0,M=0(h(1, 0, 1, u)) = FUt|10(h
−1(1, 0, 1;h(1, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,0)|D=0,M=0(q) to both sides, we have

h(1, 0, 1, u) = F−1Y1(1,0)|D=0,M=0(FUt|10(u)). (A.13)

Second, for FY0(1,0)|D=0,M=0(y) we have

F−1Ut|10(FY0(1,0)|D=0,M=0(y)) = h−1(1, 0, 0; y), (A.14)

using (A.5). Combining (A.13) and (A.14) yields,

h(1, 0, 1, h−1(1, 0, 0; y)) = F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(y). (A.15)

Note that h(1, 0, 1, h−1(1, 0, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under treatment without

the mediator. Accordingly, E[F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(Y0)|D = 0,M =

0] = E[Y1(1, 0)|D = 1,M = 0]. We can identify FY0(1,0)|D=0,M=0(y) under Assump-

tion 2, but we cannot identify FY1(1,0)|D=0,M=0(y). However, we show in the follow-

ing that we can identify the overall quantile-quantile transform F−1Y1(1,0)|D=0,M=0 ◦

FY0(1,0)|D=0,M=0(y) under the additional Assumption 3a.
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First, we use (A.1) to evaluate FY1(1,0)|D=1,M=0(y) at h(1, 0, 1, u)

FY1(1,0)|D=10,M=0(h(1, 0, 1, u)) = FUt|10(h
−1(1, 0, 1;h(1, 0, 1, u))) = FUt|10(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,0)|D=1,M=0(q) to both sides, we have

h(1, 0, 1, u) = F−1Y1(1,0)|D=1,M=0(FUt|10(u)). (A.16)

Second, for FY0(1,0)|D=0,M=0(y) we have

F−1Ut|10(FY0(1,0)|D=1,M=0(y)) = h−1(1, 0, 0; y), (A.17)

using (A.1). Combining (A.16) and (A.17) yields,

h(1, 0, 1, h−1(1, 0, 0; y)) = F−1Y1(1,0)|D=1,M=0 ◦ FY0(1,0)|D=1,M=0(y). (A.18)

The left sides of (A.15) and (A.18) are equal. In contrast to (A.15), (A.18) con-

tains only distributions that can be identified from observable data. In partic-

ular, FYt(1,0)|D=1,M=0(y) = Pr(Yt(1, 0) ≤ y|D = 1,M = 0) = Pr(Yt ≤ y|D =

1,M = 0). Accordingly, we can identify F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(y) by

Q10(y) ≡ F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(y).

Parsing Y0 through Q10(·) in the non-treated group without mediator gives

E[Q10(Y0)|D = 0,M = 0]

= E[F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(Y0)|D = 0,M = 0],

= E[F−1Y1(1,0)|D=1,M=0 ◦ FY0(1,0)|D=1,M=0(Y0(0, 0))|D = 0,M = 0],

A1,A3a
= E[h(1, 0, 1, h−1(1, 0, 0;Y0(0, 0)))|D = 0,M = 0],

A2
= E[h(1, 0, 1, h−1(1, 0, 0;Y0(1, 0)))|D = 1,M = 0],

A1,A3b
= E[F−1Y1(1,0)|D=0,M=0 ◦ FY0(1,0)|D=0,M=0(Y0(1, 0))|D = 0,M = 0],

= E[Y1(1, 0)|D = 0,M = 0] = E[Y1(1, 0)|D = 0,M(0) = 0],

(A.19)
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which has data support because of Assumption 4b.

A.4 Quantile direct effect under d = 0 conditional on D = 0

and M(0) = 0

In the following, we prove that

θ0,01 (q, 0) = F−1Y1(1,0)|D=0,M(0)=0(q)− F
−1
Y1(0,0)|D=0,M(0)=0(q),

= F−1Q10(Y0)|D=0,M=0(q)− F
−1
Y1|D=0,M=0(q).

For this purpose, we have to show that

FY1(1,0)|D=0,M(0)=0(y) = FQ10(Y0)|D=0,M=0(y) and (A.20)

FY1(0,0)|D=0,M(0)=0(y) = FY1|D=0,M=0(y), (A.21)

which is sufficient to show that the quantiles are also identified. We can show (A.21)

using the observational rule FY1(0,0)|D=0,M(0)=0(y) = FY1|D=0,M=0(y) = E[1{Y1 ≤

y}|D = 0,M = 0].

Furthermore, in analogy to (A.19), we obtain

FQ10(Y0)|D=0,M=0(y)

= E[1{Q10(Y0) ≤ y}|D = 0,M = 0],

= E[1{F−1Y1|D=1,M=0 ◦ FY0|D=1,M=0(Y0) ≤ y}|D = 0,M = 0],

= E[1{Y1(1, 0) ≤ y}|D = 0,M = 0],

= FY1(1,0)|D=0,M(0)=0(y),

which proves (A.20).
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A.5 Average direct effect under d = 0 conditional on D = 0

and M(0) = 1

In the following, we show that θ0,11 (0) = E[Y1(1, 1) − Y1(0, 1)|D = 0,M(0) =

1] = E[Q11(Y0) − Y1|D = 0,M = 1]. Using the observational rule, we obtain

E[Y1(0, 1)|D = 0,M(0) = 1] = E[Y1|D = 0,M = 1]. Accordingly, we have to show

that E[Y1(1, 1)|D = 0,M(0) = 1] = E[Q11(Y0)|D = 0,M = 1] to finish the proof.

Under Assumptions 1 and 3c, the conditional potential outcome distribution

function equals

FYt(d,0)|D=1,M=0(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 0,M = 1, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 1, T = t),

A3c
= Pr(Ut ≤ h−1(d,m, t; y)|D = 0,M = 1),

A3c
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 0,M = 1),

= FUt′ |01(h
−1(d,m, t; y)),

(A.22)

for d, t, t′ ∈ {0, 1}. We use these quantities in the following.

First, evaluating FY1(1,1)|D=0,M=1(y) at h(1, 1, 1, u) gives

FY1(1,1)|D=0,M=1(h(1, 1, 1, u)) = FUt|01(h
−1(1, 1, 1;h(1, 1, 1, u))) = FUt|01(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,1)|D=0,M=1(q) to both sides, we have

h(1, 1, 1, u) = F−1Y1(1,1)|D=0,M=1(FUt|01(u)). (A.23)

Second, for FY0(1,1)|D=0,M=1(y) we have

F−1Ut|01(FY0(1,1)|D=0,M=1(y)) = h−1(1, 1, 0; y). (A.24)

Combining (A.23) and (A.24) yields,

h(1, 1, 1, h−1(1, 1, 0; y)) = F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(y). (A.25)
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Note that h(1, 1, 1, h−1(1, 1, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under treatment with the

mediator. Accordingly, E[F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(Y0)|D = 0,M = 1] =

E[Y1(1, 1)|D = 0,M = 1]. We can identify FY0(1,1)|D=0,M=1(y) = FY0|D=0,M=1(y)

under Assumption 2, but we cannot identify FY1(1,1)|D=0,M=1(y). We show in the fol-

lowing that we can identify the overall quantile-quantile transform F−1Y1(1,1)|D=0,M=1 ◦

FY0(1,1)|D=0,M=1(y) under the additional Assumption 3d.

Under Assumptions 1 and 3d, the conditional potential outcome distribution

function equals

FYt(d,1)|D=1,M=1(y)
A1
= Pr(h(d,m, t, Ut) ≤ y|D = 1,M = 1, T = t),

= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 1, T = t),

A3d
= Pr(Ut ≤ h−1(d,m, t; y)|D = 1,M = 1),

A3d
= Pr(Ut′ ≤ h−1(d,m, t; y)|D = 1,M = 1),

= FUt′ |11(h
−1(d,m, t; y)),

(A.26)

for d, t, t′ ∈ {0, 1}. We repeat similar steps as above. First, evaluating FY1(1,1)|D=1,M=1(y)

at h(1, 1, 1, u) gives

FY1(1,1)|D=1,M=1(h(1, 1, 1, u)) = FUt|11(h
−1(1, 1, 1;h(1, 1, 1, u))) = FUt|11(u),

for any t ∈ {0, 1}. Applying F−1Y1(1,1)|D=1,M=1(q) to both sides, we have

h(1, 1, 1, u) = F−1Y1(1,1)|D=1,M=1(FUt|11(u)). (A.27)

Second, for FY0(1,1)|D=1,M=1(y) we have

F−1Ut|11(FY0(1,1)|D=1,M=1(y)) = h−1(1, 1, 1; y). (A.28)
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Combining (A.27) and (A.28) yields,

h(1, 1, 1, h−1(1, 1, 0; y)) = F−1Y1(1,1)|D=1,M=1 ◦ FY0(1,1)|D=1,M=1(y). (A.29)

The left sides of (A.25) and (A.29) are equal. In contrast to (A.25), (A.29)

contains only distributions that can be identified from observable data. In particular,

FYt(1,1)|D=1,M=1(y) = Pr(Yt(1, 1) ≤ y|D = 1,M = 1) = Pr(Yt ≤ y|D = 1,M =

1). Accordingly, we can identify F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(y) by Q11(y) ≡

F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(y).

Parsing Y0 through Q11(·) in the non-treated group with mediator gives

E[Q11(Y0)|D = 0,M = 1]

= E[F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(Y0)|D = 0,M = 1],

= E[F−1Y1(1,1)|D=1,M=1 ◦ FY0(1,1)|D=1,M=1(Y0(0, 1))|D = 0,M = 1],

A1,A3d
= E[h(1, 1, 1, h−1(1, 1, 0;Y0(0, 1)))|D = 0,M = 1],

A2
= E[h(1, 1, 1, h−1(1, 1, 0;Y0(0, 0)))|D = 0,M = 1],

A1,A3c
= E[F−1Y1(1,1)|D=0,M=1 ◦ FY0(1,1)|D=0,M=1(Y0(0, 0))|D = 0,M = 1],

= E[Y1(1, 1)|D = 0,M = 1] = E[Y1(1, 1)|D = 0,M(0) = 1],

(A.30)

which has data support because of Assumption 4c.

A.6 Quantile direct effect under d = 0 conditional on D = 0

and M(0) = 1

In the following, we show that

θ0,11 (q, 0) = F−1Y1(1,1)|D=0,M(0)=1(q)− F
−1
Y1(0,1)|D=0,M(0)=1(q),

= F−1Q11(Y0)|D=0,M=1(q)− F
−1
Y1|D=0,M=1(q).

10



For this purpose, we have to prove that

FY1(1,1)|D=0,M(0)=1(y) = FQ11(Y0)|D=0,M=1(y) and (A.31)

FY1(0,1)|D=0,M(0)=1(y) = FY1|D=0,M=1(y), (A.32)

which is sufficient to show that the quantiles are also identified. We can show (A.32)

using the observational rule FY1(0,1)|D=0,M(0)=1(y) = FY1|D=0,M=1(y) = E[1{Y1 ≤

y}|D = 0,M = 1].

In analogy to (A.30), we obtain

FQ11(Y0)|D=0,M=1(y)

= E[1{Q11(Y0) ≤ y}|D = 0,M = 1],

= E[1{F−1Y1|D=1,M=1 ◦ FY0|D=1,M=1(Y0) ≤ y}|D = 0,M = 1],

= E[1{Y1(1, 1) ≤ y}|D = 0,M = 0],

= FY1(1,1)|D=0,M(0)=1(y),

(A.33)

which proves (A.31).

A.7 Average direct effect under d = 1 conditional on D = 1

and M(1) = 1

In the following, we show that θ1,11 (1) = E[Y1(1, 1) − Y1(0, 1)|D = 1,M(1) =

1] = E[Y1 − Q01(Y0)|D = 1,M = 1]. Using the observational rule, we obtain

E[Y1(1, 1)|D = 1,M(1) = 1] = E[Y1|D = 1,M = 1]. Accordingly, we have to show

that E[Y1(0, 1)|D = 1,M(1) = 1] = E[Q01(Y0)|D = 1,M = 1] to finish the proof.

First, using (A.26) to evaluate FY1(0,1)|D=1,M=1(y) at h(0, 1, 1, u) gives

FY1(0,1)|D=1,M=1(h(0, 1, 1, u)) = FUt|11(h
−1(0, 1, 1;h(0, 1, 1, u))) = FUt|11(u),
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for any t ∈ {0, 1}. Applying F−1Y1(0,1)|D=1,M=1(q) to both sides, we have

h(0, 1, 1, u) = F−1Y1(0,1)|D=1,M=1(FUt|11(u)). (A.34)

Second, for FY0(0,1)|D=0,M=1(y) we obtain

F−1Ut|11(FY0(0,1)|D=1,M=1(y)) = h−1(0, 1, 0; y), (A.35)

using (A.26). Combining (A.34) and (A.35) yields,

h(0, 1, 1, h−1(0, 1, 0; y)) = F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(y). (A.36)

Note that h(0, 1, 1, h−1(0, 1, 0; y)) maps the period 1 (potential) outcome of an cross-

sectional observation unit with the outcome y in period 0 under non-treatment with

the mediator. Accordingly, E[F−1Y1(1,1)|D=0,M=1◦FY0(1,1)|D=0,M=1(Y0)|D = 0,M = 1] =

E[Y1(1, 1)|D = 0,M = 1]. We can identify FY0(1,1)|D=0,M=1(y) = FY0|D=0,M=1(y)

under Assumption 2, but we cannot identify FY1(1,1)|D=0,M=1(y). We show in the fol-

lowing that we can identify the overall quantile-quantile transform F−1Y1(1,1)|D=0,M=1 ◦

FY0(1,1)|D=0,M=1(y) under the additional Assumption 3c.

First, using (A.22) to evaluate FY1(0,1)|D=0,M=1(y) at h(0, 1, 1, u) gives

FY1(0,1)|D=0,M=1(h(0, 1, 1, u)) = FUt|01(h
−1(0, 1, 1;h(0, 1, 1, u))) = FUt|01(u),

for any t ∈ {0, 1}. Applying F−1Y1(0,1)|D=0,M=1(q) to both sides, we have

h(0, 1, 1, u) = F−1Y1(0,1)|D=0,M=1(FUt|01(u)). (A.37)

Second, for FY0(0,1)|D=0,M=1(y) we obtain

F−1Ut|01(FY0(0,1)|D=0,M=1(y)) = h−1(0, 1, 1; y), (A.38)
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using (A.22). Combining (A.37) and (A.38) yields,

h(0, 1, 1, h−1(0, 1, 0; y)) = F−1Y1(0,1)|D=0,M=1 ◦ FY0(0,1)|D=0,M=1(y). (A.39)

The left sides of (A.36) and (A.39) are equal. In contrast to (A.36), (A.39)

contains only distributions that can be identified from observable data. In particular,

FYt(0,1)|D=0,M=1(y) = Pr(Yt(0, 1) ≤ y|D = 0,M = 1) = Pr(Yt ≤ y|D = 0,M =

1). Accordingly, we can identify F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(y) by Q01(y) ≡

F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(y).

Parsing Y0 through Q01(·) in the treated group with mediator gives

E[Q01(Y0)|D = 1,M = 1]

= E[F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(Y0)|D = 1,M = 1],

= E[F−1Y1(0,1)|D=0,M=1 ◦ FY0(0,1)|D=0,M=1(Y0(1, 1))|D = 1,M = 1],

A1,A3c
= E[h(0, 1, 1, h−1(0, 1, 0;Y0(1, 1)))|D = 1,M = 1],

A2
= E[h(0, 1, 1, h−1(0, 1, 0;Y0(0, 1)))|D = 1,M = 1],

A1,A3d
= E[F−1Y1(0,1)|D=1,M=1 ◦ FY0(0,1)|D=1,M=1(Y0(0, 1))|D = 1,M = 1],

= E[Y1(0, 1)|D = 1,M = 1] = E[Y1(0, 1)|D = 1,M(1) = 1],

(A.40)

which has data support under Assumption 4d.

A.8 Quantile direct effect under d = 1 conditional on D = 1

and M(1) = 1

In the following, we show that

θ1,11 (q, 1) = F−1Y1(1,1)|D=1,M(1)=1(q)− F
−1
Y1(0,1)|D=1,M(1)=1(q),

= F−1Y1|D=1,M=1(q)− F
−1
Q01(Y0)|D=1,M=1(q).
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For this purpose, we have to prove that

FY1(1,1)|D=1,M(1)=1(y) = FY1|D=1,M=1(y) and (A.41)

FY1(0,1)|D=1,M(1)=1(y) = FQ01(Y0)|D=1,M=1(y), (A.42)

which is sufficient to show that the quantiles are also identified. We can show (A.41)

using the observational rule FY1(1,1)|D=1,M(1)=1(y) = FY1|D=1,M=1(y) = E[1{Y1 ≤

y}|D = 1,M = 1].

In analogy to (A.40), we obtain

FQ01(Y0)|D=1,M=1(y)

= E[1{Q01(Y0) ≤ y}|D = 1,M = 1],

= E[1{F−1Y1|D=0,M=1 ◦ FY0|D=0,M=1(Y0) ≤ y}|D = 1,M = 1],

= E[1{Y1(0, 1) ≤ y}|D = 1,M = 0],

= FY1(0,1)|D=1,M(1)=1(y),

which proves (A.42).

B Proof of Equations (1) and (2)

The average total effect for the entire population is identified by,

∆1 = E[Y1(1,M(1))]− E[Y1(0,M(0))],

A5
= E[Y1(1,M(1))|D = 1]− E[Y1(0,M(0))|D = 0],

= E[Y1|D = 1]− E[Y1|D = 0],

where the first equality is the definition of ∆1, the second equality hold by Assump-

tion 5, and the last equality holds by the observational rule.

We define the conditional distribution FY1|D=d(y) = Pr(Y1 ≤ y|D = d) and

F−1Y1|D=d(q) = inf{y : FY1|D=d(y) ≥ q}. We can show the identification of the total

QTE for the entire population ∆1(q) = F−1Y1|D=1(q)− F
−1
Y1|D=0(q) when we show that
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FY1(1,M(1))(y) = FY1|D=1(y) and FY1(0,M(0))(y) = FY1|D=0(y). Using Assumption 5 and

the observational rule gives,

FY1(1,M(1))(y) = Pr(Y1(1,M(1)) ≤ y),

A5
= Pr(Y1(1,M(1)) ≤ y|D = 1),

= Pr(Y1 ≤ y|D = 1) = FY1|D=1(y),

and

FY1(0,M(0))(y) = Pr(Y1(0,M(0)) ≤ y),

A5
= Pr(Y1(0,M(0)) ≤ y|D = 0),

= Pr(Y1 ≤ y|D = 0) = FY1|D=0(y),

which finishes the proof.

By Assumption 5, the share of a type τ conditional on D corresponds to pτ (in

the population), as D is randomly assigned. This implies that p1|1 = pn1 + pap,

p1|0 = pn1 +pan, p0|1 = pn0 +pan, and p0|0 = pn0 +pap. Under Assumption 6, pan = 0,

which finishes the proof of equation (1).

Furthermore, E[Yt(d,m)|τ,D = 1] = E[Yt(d,m)|τ,D = 0] = E[Yt(d,m)|τ ] due

to the independence ofD and the potential outcomes as well as the types τ (which are

a deterministic function of M(d)) under Assumption 5. It follows that conditioning

on D is not required on the right hand side of the following equation, which expresses

the mean outcome conditional D = 0 and M = 0 as weighted average of the mean

potential outcomes of affected positively and not-affected at 0:

E[Yt|D = 0,M = 0]

=
pn0

pn0 + pap
E[Yt(0, 0)|τ = n0] +

pap
pn0 + pap

E[Yt(0, 0)|τ = ap].
(B.1)

Only affected positively and not-affected at 0 satisfy M(0) = 0 and thus make up
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the group with D = 0 and M = 0. After some rearrangements we obtain

E[Yt(0, 0)|τ = n0]− E[Yt(0, 0)|τ = ap]

=
pn0 + pap
pap

{E[Yt(0, 0)|τ = n0]− E[Yt|D = 0,M = 0]} .
(B.2)

Next, we consider observations with D = 1 and M = 0, which might consist of both

not-affected at 0 and affected negatively, as M(1) = 0 for both types. However, by

Assumption 6, affected negatively are ruled out, such that the mean outcome given

D1 = 1 and M1 = 0 is determined by not-affected at 0 only:

E[Yt|D = 1,M = 0]
A5,A6

= E[Yt(1, 0)|τ = n0]. (B.3)

Furthermore, by Assumption 2,

E[Y0(0, 0)|τ = n0]
A2
= E[Y0(1, 0)|τ = n0]

A5,A6
= E[Y0|D = 1,M = 0].

Similarly to (B.1) for the not-affected at 0 and affected positively, consider the

mean outcome given D = 1 and M = 1, which is made up by not-affected at 1 and

affected positively (the types with M(1) = 1)

E[Yt|D = 1,M = 1]

=
pn1

pn1 + pap
E[Yt(1, 1)|τ = n1] +

pap
pn1 + pap

E[Yt(1, 1)|τ = ap].
(B.4)

After some rearrangements we obtain

E[Yt(1, 1)|τ = n1]− E[Yt(1, 1)|τ = ap]

=
pn1 + pap
pap

{E[Yt(1, 1)|τ = n1]− E[Yt|D = 1,M = 1]} .
(B.5)

By Assumptions 5 and 6,

E[Yt|D = 0,M = 1] = E[Yt(0, 1)|τ = n1]. (B.6)
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Now consider (B.5) for period T = 0, and note that by Assumption 2, E[Y0(1, 1)|τ =

n1] = E[Y0(0, 0)|τ = n1] = E[Y0(0, 1)|τ = n1] andE[Y0(1, 1)|τ = ap] = E[Y0(0, 0)|τ =

ap].

Combining (B.4), (B.6), and the law of iterative expectations (LIE) gives

E[Y0|D = 1]

LIE
= E[Y0|D = 1,M = 1] · p1|1 + E[Y0|D = 1,M = 0] · p0|1,

= E[Y0(1, 1)|τ = ap] · pap + E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(1, 0)|τ = n0] · pn0,
A2
= E[Y0(1, 1)|τ = ap] · pap + E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = n0] · pn0.

Likewise, combining (B.1) and (B.3) gives

E[Y0|D = 0]

LIE
= E[Y0|D = 0,M = 1] · p1|0 + E[Y0|D0 = 1,M = 0] · p0|0,

= E[Y0(0, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = ap] · pap + E[Y0(0, 0)|τ = n0] · pn0,
A2
= E[Y0(1, 1)|τ = n1] · pn1 + E[Y0(0, 0)|τ = ap] · pap + E[Y0(0, 0)|τ = n0] · pn0.

Accordingly,

E[Y0|D = 1]− E[Y0|D = 0]

p1|1 − p1|0
= E[Y0(1, 1)|τ = ap]− E[Y0(0, 0)|τ = ap]

A2
= 0,

which proves equation (2). Accordingly, E[Y0|D = 1]−E[Y0|D = 0] = 0 is a testable

implication of Assumption 2, 5, and 6.

C Proof of Theorem 2

C.1 Average direct effect on the not-affected at 0

In the following, we show that θn01 = E[Y1(1, 0) − Y1(0, 0)|τ = n0] = E[Y1 −

Q00(Y0)|D = 1,M = 0]. From (B.3), we obtain the first ingredient E[Y1(1, 0)|τ =
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n0] = E[Y1|D = 1,M = 0]. Furthermore, from (A.9) we have E[Q00(Y0)|D =

1,M = 0] = E[Y1(0, 0)|D = 1,M(1) = 0]. Under Assumption 5 and 6,

E[Y1(0, 0)|D = 1,M(1) = 0] = E[Y1(0, 0)|D = 1, τ = n0] = E[Y1(0, 0)|τ = n0].

(C.1)

C.2 Quantile direct effect on the not-affected at 0

We prove that

θn01 (q) = F−1Y1(1,0)|n0(q)− F
−1
Y1(0,0)|n0(q),

= F−1Y1|D=1,M=0(q)− F
−1
Q00(Y0)|D=1,M=0(q).

This requires showing that

FY1(1,0)|n0(y) = FY1|D=1,M=0(y) and (C.2)

FY1(0,0)|n0(y) = FQ00(Y0)|D=1,M=0(y). (C.3)

Under Assumptions 5 and 6,

FYt|D=1,M=0(y) = E[1{Yt ≤ y}|D = 1,M = 0]

A5,A6
= E[1{Yt(1, 0) ≤ y}|τ = n0]

= FYt(1,0)|n0(y),

(C.4)

which proves (C.2). From (A.12), we have

FQ00(Y0)|D=1,M=0(y) = FY1(0,0)|D=1,M(1)=0(y) = E[1{Y1(0, 0) ≤ y}|D = 1,M(1) = 0].

Under Assumption 5 and 6,

E[1{Y1(0, 0) ≤ y}|D = 1,M(1) = 0]
A5,A6

= E[1{Y1(0, 0) ≤ y}|τ = n0]

= FY1(0,0)|n0(y),
(C.5)
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which proves (C.3).

C.3 Average direct effect under d = 0 on affected positively

In the following, we show that

θap1 (0) =E[Y1(1, 0)− Y1(0, 0)|τ = ap],

=
p0|0

p0|0 − p0|1
E[Q10(Y0)− Y1|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Y1 −Q00(Y0)|D = 1,M = 0].

Plugging (C.1) in (B.1) under T = 1, we obtain

E[Y1|D = 0,M = 0] =
pn0

pn0 + pap
E[Q00(Y0)|D = 1,M = 0]

+
pap

pn0 + pap
E[Y1(0, 0)|τ = ap].

This allows identifying

E[Y1(0, 0)|τ = ap] =
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Q00(Y0)|D = 1,M = 0].

(C.6)

Accordingly, we have to show the identification of E[Y1(1, 0)|ap] to finish the

proof. From (A.19) we have E[Y1(1, 0)|D = 0,M = 0] = E[Q10(Y0)|D = 0,M = 0].

Applying the law of iterative expectations, gives

E[Y1(1, 0)|D = 0,M = 0] =
pn0

pn0 + pap
E[Y1(1, 0)|D = 0,M = 0, τ = n0]

+
pap

pn0 + pap
E[Y1(1, 0)|D = 0,M = 0, τ = ap],

A5
=

pn0
pn0 + pap

E[Y1(1, 0)|τ = n0] +
pap

pn0 + pap
E[Y1(1, 0)|τ = ap].
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After some rearrangements and using (B.3), we obtain

E[Y1(1, 0)|τ = ap] =
pn0 + pap
pap

E[Q10(Y0)|D = 0,M = 0]− pn0
pap

E[Y1|D = 1,M = 0].

This gives

E[Y1(1, 0)|τ = ap] =
p0|0

p0|0 − p0|1
E[Q10(Y0)|D = 0,M = 0]

−
p0|1

p0|0 − p0|1
E[Y1|D = 1,M = 0],

(C.7)

using pn0 = p0|1, and pap + pn0 = p0|0.

C.4 Quantile direct effect under d = 0 on affected positively

We show that

FY1(1,0)|ap(y) =
p0|0

p0|0 − p0|1
FQ10(Y0)|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FY1|D=1,M=0(y) and

FY1(0,0)|ap(y) =
p0|0

p0|0 − p0|1
FY1|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FQ00(Y0)|D=1,M=0(y),

which proves that θap1 (q, 0) = F−1Y1(1,0)|ap(q)− F
−1
Y1(0,0)|ap(q) is identified.

From (A.20), we have FY1(1,0)|D=0,M(0)=0(y) = FQ10(Y0)|D=0,M=0(y). Applying the

law of iterative expectations gives

FY1(1,0)|D=0,M(0)=0(y) =
pn0

pn0 + pap
FY1(1,0)|D=0,M(0)=0,τ=n0(y)

+
pap

pn0 + pap
FY1(1,0)|D=0,M(0)=0,τ=ap(y),

A5
=

pn0
pn0 + pap

FY1(1,0)|n0(y) +
pap

pn0 + pap
FY1(1,0)|ap(y).

Using (C.2) and rearranging the equation gives,

FY1(1,0)|ap(y) =
p0|0

p0|0 − p0|1
FQ10(Y0)|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FY1|D=1,M=0(y). (C.8)

20



In analogy to (B.1), the outcome distribution under D = 0 and M = 0 equals

FY1|D=0,M=0(y) =
pn0

pn0 + pap
FY1(0,0)|n0(y) +

pap
pn0 + pap

FY1(0,0)|ap(y).

Using (C.3) and rearranging the equation gives

FY1(0,0)|ap(y) =
p0|0

p0|0 − p0|1
FY1|D=0,M=0(y)−

p0|1
p0|0 − p0|1

FQ00(Y0)|D=1,M=0(y). (C.9)

C.5 Average direct effect on the not-affected at 1

In the following, we show that θn11 = E[Y1(1, 1) − Y1(0, 1)|τ = n1] = E[Q11(Y0) −

Y1|D = 0,M = 1]. From (B.6), we obtain the first ingredient E[Y1(0, 1)|n1] =

E[Y1|D = 0,M = 1]. Furthermore, from (A.30) we have E[Q11(Y0)|D = 0,M =

1] = E[Y1(1, 1)|D = 0,M(0) = 1]. Under Assumption 5 and 6,

E[Y1(1, 1)|D = 0,M(0) = 1] = E[Y1(1, 1)|D = 0, τ = n1] = E[Y1(1, 1)|τ = n1].

(C.10)

C.6 Quantile direct effect on the not-affected at 1

We prove that

θn11 (q) = F−1Y1(1,1)|n1(q)− F
−1
Y1(0,1)|n1(q),

= F−1Q11(Y0)|D=0,M=1(q)− F
−1
Y1|D=0,M=1(q).

This requires showing that

FY1(1,1)|n1(y) = FQ11(Y0)|D=0,M=1(y) and (C.11)

FY1(0,1)|n1(y) = FY1|D=0,M=1(y). (C.12)
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Under Assumptions 5 and 6,

FYt|D=0,M=1(y) = E[1{Yt ≤ y}|D = 0,M = 1]

A5,A6
= E[1{Yt(0, 1) ≤ y}|τ = n1]

= FYt(0,1)|n1, (y).

(C.13)

which proves (C.12). From (A.33), we have

FQ11(Y0)|D=0,M=1(y) = FY1(1,1)|D=0,M(0)=1(y) = E[1{Y1(1, 1) ≤ y}|D = 0,M(0) = 1].

Under Assumption 5 and 6,

E[1{Y1(1, 1) ≤ y}|D = 0,M(0) = 1]
A5,A6

= E[1{Y1(1, 1) ≤ y}|τ = n1]

= FY1(1,1)|n1(y),
(C.14)

which proves (C.11).

C.7 Average direct effect under d = 1 on affected positively

In the following, we show that

θap1 (1) =E[Y1(1, 1)− Y1(0, 1)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1 −Q01(Y0)|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Q11(Y0)− Y1|D = 0,M = 1].

Plugging (C.10) in (B.4), we obtain

E[Y1|D = 1,M = 1] =
pn1

pn1 + pap
E[Q11(Y0)|D = 0,M = 1]

+
pap

pn1 + pap
E[Y1(1, 1)|τ = ap].
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This allows identifying

E[Y1(1, 1)|τ = ap] =
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Q11(Y0)|D = 0,M = 1].

(C.15)

From (A.40) we have E[Y1(0, 1)|D = 1,M = 1] = E[Q01(Y0)|D = 1,M = 1].

Applying the law of iterative expectations, gives

E[Y1(0, 1)|D = 1,M = 1] =
pn1

pn1 + pap
E[Y1(0, 1)|D = 1,M = 1, τ = n1]

+
pap

pn1 + pap
E[Y1(0, 1)|D = 1,M = 1, τ = ap],

A5
=

pn1
pn1 + pap

E[Y1(0, 1)|τ = n1] +
pap

pn1 + pap
E[Y1(0, 1)|τ = ap].

After some rearrangements and using (B.6), we obtain

E[Y1(0, 1)|τ = ap] =
pn1 + pap
pap

E[Q01(Y0)|D = 1,M = 1]− pn1
pap

E[Y1|D = 0,M = 1].

This gives

E[Y1(0, 1)|τ = ap] =
p1|1

p1|1 − p1|0
E[Q01(Y0)|D = 1,M = 1]

−
p1|0

p1|1 − p1|0
E[Y1|D = 0,M = 1],

(C.16)

with pn1 = p1|0, and pap + pn1 = p1|1.

C.8 Quantile direct effect under d = 1 on affected positively

We show that

FY1(1,1)|ap(y) =
p1|1

p1|1 − p1|0
FY1|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FQ11(Y0)|D=0,M=1(y) and

FY1(0,1)|ap(y) =
p1|1

p1|1 − p1|0
FQ01(Y0)|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FY1|D=0,M=1(y),

which proves that θap1 (q, 1) = F−1Y1(1,1)|ap(q)− F
−1
Y1(0,1)|ap(q) is identified.
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In analogy to (B.4), the outcome distribution under D = 0 and M = 0 equals:

FY1|D=1,M=1(y) =
pn1

pn1 + pap
FY1(1,1)|n1(y) +

pap
pn1 + pap

FY1(1,1)|ap(y).

Using (C.11) and rearranging the equation gives

FY1(1,1)|ap(y) =
p1|1

p1|1 − p1|0
FY1|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FQ11(Y0)|D=0,M=1(y). (C.17)

From (A.42), we have FY1(0,1)|D=1,M(1)=1(y) = FQ01(Y0)|D=1,M=1(y). Applying the

law of iterative expectations gives

FY1(0,1)|D=1,M(1)=1(y) =
pn1

pn1 + pap
FY1(0,1)|D=1,M(1)=1,τ=n1(y)

+
pap

pn1 + pap
FY1(0,1)|D=1,M(1)=1,τ=ap(y),

A5
=

pn1
pn1 + pap

FY1(0,1)|n1(y) +
pap

pn1 + pap
FY1(0,1)|ap(y).

Using (C.12) and rearranging the equation gives,

FY1(0,1)|ap(y) =
p1|1

p1|1 − p1|0
FQ01(Y0)|D=1,M=1(y)−

p1|0
p1|1 − p1|0

FY1|D=0,M=1(y). (C.18)

D Proof of Theorem 3

D.1 Average treatment effect on the affected positively

In (C.15) and (C.6), we show that

θap1 =E[Y1(1, 1)− Y1(0, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Q00(Y0)|D = 1,M = 0].
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D.2 Quantile treatment effect on the affected positively

In (C.17) and (C.9), we show that FY1(1,1)|ap(y) and FY1(0,0)|ap(y) are identified. Ac-

cordingly, ∆ap
1 (q) = F−1Y1(1,1)|ap(q)− F

−1
Y1(0,0)|ap(q) is identified.

D.3 Average indirect effect under d = 0 on affected posi-

tively

In (C.16) and (C.6), we show that

δap1 (0) =E[Y1(0, 1)− Y1(0, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Q01(Y0)|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Y1|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Y1|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Q00(Y0)|D = 1,M = 0].

D.4 Quantile indirect effect under d = 0 on affected posi-

tively

In (C.18) and (C.9), we show that FY1(0,1)|ap(y) and FY1(0,0)|ap(y) are identified. Ac-

cordingly, δap1 (q, 0) = F−1Y1(0,1)|ap(q)− F
−1
Y1(0,0)|ap(q) is identified.

D.5 Average indirect effect under d = 1 on affected posi-

tively

In (C.15) and (C.7), we show that

δap1 (1) =E[Y1(1, 1)− Y1(1, 0)|τ = ap],

=
p1|1

p1|1 − p1|0
E[Y1|D = 1,M = 1]−

p1|0
p1|1 − p1|0

E[Q11(Y0)|D = 0,M = 1]

−
p0|0

p0|0 − p0|1
E[Q10(Y0)|D = 0,M = 0] +

p0|1
p0|0 − p0|1

E[Y1|D = 1,M = 0].
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D.6 Quantile indirect effect under d = 1 on affected posi-

tively

In (C.17) and (C.8), we show that FY1(1,1)|ap(y) and FY1(1,0)|ap(y) are identified. Ac-

cordingly, δap1 (q, 1) = F−1Y1(1,1)|ap(q)− F
−1
Y1(1,0)|ap(q) is identified.

E Simulation study

To shape the intuition for our identification results, this appendix presents a brief

simulation based on the following data generating process (DGP):

T ∼ Binom(0.5), D ∼ Binom(0.5), U ∼ Unif(−1, 1), V ∼ N(0, 1)

independent of each other, and

M = I{D + U + V > 0}, YT = Λ((1 +D +M +D ·M) · T + U).

Treatment D as well as the observed time period T are randomized and binomi-

ally distributed with a 50% chance of being 1 or 0, while the mediator-outcome

association is confounded due to the unobserved time constant heterogeneity U (im-

plying U0 = U1). The potential outcome in period 1 is given by Y1(d,M(d′)) =

Λ((1 + d + M(d′) + d ·M(d′)) + U), where Λ denotes a link function. If the latter

corresponds to the identity function, our model is linear and implies a homogeneous

time trend T equal to 1. If Λ is nonlinear, the time trend is heterogeneous, which

invalidates the common trend assumption of DiD models. M is not only a func-

tion of D and U , but also of the unobserved random term V , which guarantees

common support w.r.t. U , see Assumption 4. Affected positively, not-affected at 1,

and not-affected at 0 satisfy, respectively: ap = I{U + V ≤ 0, 1 + U + V > 0},

n1 = I{U + V > 0}, and n0 = I{1 + U + V ≤ 0}.

In the simulations with 1,000 replications, we consider two sample sizes (N =

1, 000, 4, 000) and investigate the behaviour of our CiC approach as well as the
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DiD approach of Deuchert, Huber, and Schelker (2019) in both a linear (Λ equal

to identity function) and nonlinear outcome model where Λ equals the exponential

function. The latter implies that a specific ceteris paribus change in a right hand

variable entails a specific percentage change in the outcome (rather than a specific

level change as in the linear model). To implement the CiC estimators in the simu-

lations as well as the application in Section 4, we make use of the ‘cic’ command in

the qte R-package by Callaway (2016) with its default values.

Table E.1: Linear model with random treatment

θ̂n01 θ̂n11 ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.00 -0.00 -0.01 -0.01 -0.01 -0.00 -0.01
sd 0.11 0.08 0.23 0.10 0.13 0.27 0.27
rmse 0.11 0.08 0.23 0.10 0.13 0.27 0.27
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.11 0.04 0.08 0.05 0.13 0.14 0.27

N=4,000
bias -0.00 -0.00 0.00 -0.00 -0.01 0.01 0.01
sd 0.06 0.04 0.12 0.05 0.07 0.14 0.14
rmse 0.06 0.04 0.12 0.05 0.07 0.14 0.14
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.06 0.02 0.04 0.02 0.07 0.07 0.14

B. Difference-in-Differences
N=1,000

bias 0.01 -0.00 -0.01 -0.01 0.00 -0.02 0.00
sd 0.11 0.09 0.14 0.14 0.12 0.19 0.10
rmse 0.11 0.09 0.14 0.14 0.12 0.19 0.10
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.11 0.04 0.05 0.07 0.12 0.10 0.10

N=4,000
bias -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00
sd 0.06 0.04 0.07 0.07 0.06 0.10 0.05
rmse 0.06 0.04 0.07 0.07 0.06 0.10 0.05
true 1.00 2.00 3.00 2.00 1.00 2.00 1.00
relr 0.06 0.02 0.02 0.04 0.06 0.05 0.05

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of
the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean
squared error relative to the true effect.

Table E.1 reports the bias, standard deviation (‘sd’), root mean squared error
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(‘rmse’), true effect (‘true’), and the relative root mean squared error in percent of

the true effect (‘relr’) of the respective estimators of θn01 , θn11 , ∆ap
1 , θap1 (1), θap1 (0),

δap1 (1), and δap1 (0) for the linear model. In this case, the identifying assumptions

underlying both the CiC (Panel A.) and DiD (Panel B.) estimators are satisfied.

Specifically, the homogeneous time trend on the cross-sectional observation unit

satisfies any of the common trend assumptions in Deuchert, Huber, and Schelker

(2019), while the monotonicity of Y in U and the independence of T and U satisfies

the key assumptions of this paper. For this reason any of the estimates in Table

E.1 are close to being unbiased and appear to converge to the true effect at the

parametric rate when comparing the results for the two different sample sizes.1

Table E.2 provides the results for the exponential outcome model, in which the

time trend is heterogeneous and interacts with U through the nonlinear link function.

While the CiC assumptions hold (Panel A.), average time trends are heterogeneous

across complier types such that the DiD approach (Panel B.) of Deuchert, Huber,

and Schelker (2019) is inconsistent. Accordingly, the biases of the CiC estimates

generally approach zero as the sample size increases, while this is not the case for

the DiD estimates. CiC yields a lower root mean squared error than the respective

DiD estimator in all but one case (namely δ̂ap1 (0) with N = 1, 000) and its relative

attractiveness increases in the sample size due to its lower bias.2

In our next simulation design, we maintain the exponential outcome model but

assume D to be selective w.r.t. U rather than random. To this end, the treatment

model in (E) is replaced by D = I{U + Q > 0}, with the independent variable

Q ∼ N(0, 1) being an unobserved term. The average of U among the treated and

no-treated amounts to 0.24 and -0.24, respectively. This treatment selectivity entails

1In contrast, two stage least squares regression using D as instrument for M is inconsistent due
to the direct effects violating the IV exclusion restriction. The IV estimate neither recovers ∆ap

1 ,
nor δap1 (1), nor δap1 (0), with the bias amounting to approximately 4, 5, and 6, respectively, for the
three parameters with the sample sizes considered. This motivates the application of our method
to verify the IV exclusion restriction in Section 4.

2However, we can easily modify the DGP underlying Table E.2 to match a scenario in which also CiC
is inconsistent, e.g. by a violation of Assumption 3. For instance, when changing the distribution
of U to U |T = 0 ∼ Unif(−1, 1) and U |T = 1 ∼ Unif(0, 1) such that it depends on T , we obtain
non-negligible biases in the CiC estimates that do not vanish as the sample size increases.
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Table E.2: Nonlinear model with random treatment

θ̂n01 θ̂n11 ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.01 -0.14 -0.48 -0.35 -0.11 -0.37 -0.13
sd 0.48 5.08 8.47 6.20 1.16 8.64 4.23
rmse 0.48 5.08 8.48 6.21 1.17 8.65 4.23
true 3.49 68.09 52.42 47.70 4.72 47.70 4.72
relr 0.14 0.07 0.16 0.13 0.25 0.18 0.90

N=4,000
bias -0.01 0.01 -0.00 -0.11 -0.07 0.07 0.11
sd 0.25 2.63 4.37 3.20 0.66 4.44 2.04
rmse 0.25 2.63 4.37 3.20 0.66 4.44 2.04
true 3.49 68.09 52.45 47.73 4.72 47.73 4.72
relr 0.07 0.04 0.08 0.07 0.14 0.09 0.43

B. Difference-in-Differences
N=1,000

bias -0.27 -8.91 14.42 11.46 -1.49 15.91 2.96
sd 0.46 2.62 2.58 2.62 0.47 2.61 0.47
rmse 0.53 9.29 14.65 11.76 1.56 16.12 2.99
true 3.49 68.09 52.42 47.70 4.72 47.70 4.72
relr 0.15 0.14 0.28 0.25 0.33 0.34 0.63

N=4,000
bias -0.28 -8.79 14.51 11.57 -1.51 16.02 2.94
sd 0.24 1.28 1.26 1.28 0.25 1.27 0.23
rmse 0.37 8.88 14.57 11.64 1.53 16.07 2.95
true 3.49 68.09 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.13 0.28 0.24 0.32 0.34 0.62

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.

non-negligible differences in mean potential outcomes across treatment groups, e.g.

E[Y1(1, 1)|D = 1] − E[Y1(1, 1)|D = 0] = 29.1. Under this violation of Assumption

5, the shares and effects of affected positively are no longer identified, which is con-

firmed by the simulation results presented in Table E.3. The bias in the CiC based

total, direct, and indirect effects on affected positively do not vanish as the sample

size increases. Furthermore, under non-random assignment of D (while maintaining

monotonicity of M in D), the not-affected at 0 and 1 respective distributions of

U differ across treatment. Therefore, average direct effects among the total of not-
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Table E.3: Nonlinear model with non-random treatment

θ̂0,11 (1) θ̂1,01 (0) ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.02 0.13 47.21 40.19 -1.44 48.64 7.02
sd 0.71 4.56 5.45 4.11 0.75 5.53 2.92
rmse 0.71 4.56 47.52 40.40 1.62 48.96 7.60
true 4.41 54.19 52.42 47.70 4.72 47.70 4.72
relr 0.16 0.08 0.91 0.85 0.34 1.03 1.61

N=4,000
bias -0.00 0.06 47.38 40.13 -1.53 48.91 7.25
sd 0.38 2.35 2.84 2.04 0.38 2.86 1.51
rmse 0.38 2.35 47.47 40.18 1.57 48.99 7.40
true 4.40 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.09 0.04 0.90 0.84 0.33 1.03 1.57

B. Difference-in-Differences
N=1,000

bias 0.35 19.98 29.00 27.65 0.04 28.96 1.35
sd 0.67 2.48 2.46 2.48 0.67 2.51 0.45
rmse 0.75 20.14 29.11 27.76 0.67 29.07 1.43
true 4.41 54.19 52.42 47.70 4.72 47.70 4.72
relr 0.17 0.37 0.56 0.58 0.14 0.61 0.30

N=4,000
bias 0.34 20.02 28.98 27.65 0.02 28.96 1.33
sd 0.35 1.22 1.19 1.22 0.35 1.24 0.23
rmse 0.49 20.06 29.01 27.68 0.35 28.99 1.35
true 4.40 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.37 0.55 0.58 0.07 0.61 0.29

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.

affected at 0 or 1, respectively, are not identified. Yet, θ1,01 (1), which is still identified

by the same estimator as before, yields the direct effect among treated not-affected

at 0 (as affected negatively do not exist). Likewise, θ0,11 (0) corresponds to the direct

effect on non-treated not-affected at 1. Indeed, the results in Table E.3 suggest that

both parameters are consistently estimated by the CiC approach (Panel A.).

Finally, we also consider a violation of Assumption 6 by relaxing monotonicity of

M in D. We do so by modifying the mediator equation to M = I{(2κ−1) ·D+U +

V > 0}, with κ ∼ Binom(0.2) being a randomly and binomially distributed variable,

30



implying that the coefficient on D is either 1 or −1 with a probability of 80% or 20%,

respectively. This entails a defier share of roughly 9% in the population, while we

otherwise maintain the specification underlying the results in Table E.3. We note

that θ1,01 (1) now corresponds to the direct effect on treated not-affected at 0 and

affected negatively, θ0,11 (0) on non-treated not-affected at 1 and affected negatively.

Table E.4 provides the results. Again, CiC performs decently for estimating θ1,01 (1)

and θ0,11 (0) as suggested by Theorem 1, while non-negligible relative root mean

squared error arise for the remaining parameters.

Table E.4: Nonlinear model with non-random treatment and non-monotonicity

θ̂0,11 (1) θ̂1,01 (0) ∆̂ap
1 θ̂ap1 (1) θ̂ap1 (0) δ̂ap1 (1) δ̂ap1 (0)

A. Changes-in-Changes
N=1,000

bias 0.06 0.24 65.65 55.29 -3.76 69.41 10.35
stdev 0.62 4.90 10.98 7.74 0.86 11.25 6.47
rmse 0.62 4.91 66.56 55.83 3.86 70.31 12.21
true 5.62 54.19 52.45 47.73 4.72 47.73 4.72
relr 0.11 0.09 1.27 1.17 0.82 1.47 2.59

N=4,000
bias 0.02 0.10 65.91 55.01 -3.84 69.75 10.90
stdev 0.31 2.49 5.80 4.03 0.46 5.99 3.23
rmse 0.32 2.49 66.17 55.16 3.86 70.00 11.36
true 5.63 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.06 0.05 1.26 1.16 0.82 1.47 2.41

B. Difference-in-Differences
N=1,000

bias 0.79 21.78 31.59 30.24 1.70 29.90 1.36
stdev 0.54 2.82 2.79 2.81 0.56 2.82 0.46
rmse 0.96 21.97 31.72 30.37 1.79 30.03 1.43
true 5.62 54.19 52.45 47.73 4.72 47.73 4.72
relr 0.17 0.41 0.60 0.64 0.38 0.63 0.30

N=4,000
bias 0.80 21.76 31.54 30.21 1.70 29.84 1.33
stdev 0.27 1.36 1.33 1.36 0.28 1.35 0.24
rmse 0.84 21.80 31.57 30.24 1.72 29.87 1.35
true 5.63 54.18 52.45 47.73 4.72 47.73 4.72
relr 0.15 0.40 0.60 0.63 0.37 0.63 0.29

Note: ‘bias’, ‘sd’, and ‘rmse’ provide the bias, standard deviation, and root mean squared error of

the respective estimator. ‘true’ and ‘relr’ are the respective true effect as well as the root mean

squared error relative to the true effect.
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F Background Information for Applications

F.1 JOBS II Evaluation

The JOBS II was a modified version of the earlier JOBS programme, which had

been found to improve labour market outcomes such as job satisfaction, motivation,

earnings, and job stability, see Caplan, Vinokur, Price, and van Ryn (1989) and Vi-

nokur, van Ryn, Gramlich, and Price (1991), as well as mental health, see Vinokur,

Price, and Caplan (1991). According to the results of Vinokur, Price, and Schul

(1995), the JOBS II programme increased re-employment rates and improved men-

tal health outcomes, especially for participants having an elevated risk of depression.

The JOBS interventions had an important impact in the academic literature (see

e.g. Wanberg, 2012, Liu, Huang, and Wang, 2014) and the methodology was imple-

mented in field experiments in Finland (Vuori, Silvonen, Vinokur, and Price, 2002,

Vuori and Silvonen, 2005) and the Netherlands (Brenninkmeijer and Blonk, 2011),

suggesting positive effects on labour market integration in either case. Imai, Keele,

and Tingley (2010) analyse Jobs II in a mediation context as well, but consider

a different mediator, namely job search self-efficacy, and a different identification

strategy based on selection on observables.

In the JOBS II intervention, individuals responded to a screening questionnaire

that collected pre-treatment information on mental health in the baseline period.

Based on the latter, individuals were classified as having either a high or low de-

pression risk and those with a high risk were oversampled before the training was

randomly assigned. Randomization was followed by yet another questionnaire sent

out two weeks before the actual job training, see Vinokur, Price, and Schul (1995),

which also provided information on whether an individual had been assigned the

training. Consequently, the data collected in that questionnaire must be considered

post-treatment as they could be affected by learning the assignment. Therefore,

we rely on the earlier screening data as the relevant pre-treatment period prior to

random programme assignment.
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The job training consisted of five 4-hours seminars conducted in morning sessions

during one week between March 1 and August 7, 1991. Members of the treatment

group who participated in at least four of the five sessions received USD 20. Each

of the standardized training sessions consisted, among other aspects, of the learning

and practicing of job search and problem-solving skills. The control group received

a booklet with information on job search methods (Vinokur, Price, and Schul, 1995,

p. 44-49).

F.2 Paid Maternal Leave Reform

There is a large literature on the impact of maternal or parental leave on female

labour supply, earnings, or fertility, see for instance Lalive and Zweimüller (2009),

Lalive, Schlosser, Steinhauer, and Zweimüller (2014), Fitzenberger, Steffes, and

Strittmatter (2016), Byker (2016), Dahl, Løken, Mogstad, and Salvanes (2016),

Olivetti and Petrongolo (2017), and Zimmert and Zimmert (2020). The design of

maternal or paternal leave programs varies substantially across countries and estima-

tion results depend heavily on the design of such programs with respect to the leave

duration, the income replacement rate, job protection regulation, the availability of

paid leave to either parent, etc. (Olivetti and Petrongolo, 2017).

In Switzerland, paid maternal leave was only introduced in 2005. Before, the

Law on Manufacturing of 1877 just prohibited maternal labour supply for 8 weeks,

with at least 6 weeks taken right after childbirth. In 1945 the constitutional bases

for a paid maternal leave were established. However, numerous attempts to actually

introduce paid maternal leave were all rejected in nation-wide popular ballots, the

last unsuccessful attempt only dating back to 1999. Finally, on September 24, 2004,

a majority of 55.4% of Swiss citizens voted in favour of the introduction of 14 weeks

of paid maternal leave, with a replacement rate of 80% and a cap at CHF 172 per

day in 2005. Paid maternal leave is covered through the Swiss fund for loss of

earnings and maternal pay. The reform took effect on July 1, 2005. Job protection

regulation remained unaffected and protection against dismissal lasts during the
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entire pregnancy and 16 weeks after childbirth.

The political campaigning and discussions on the various topics on the agenda

(there were four federal propositions in September) typically start two to three

months before. Given that all previous attempts to introduce paid maternal leave

were rejected in popular ballots, the latest in 1999, and that the subsequent ac-

ceptance with 55.4% was far from overwhelming, important anticipation effects are

fairly unlikely. The post-treatment period contains information from the 2007 ques-

tionnaire. We do not use data from 2005 and 2006 because interviews of the Swiss

Labour Force Survey are only conducted up to the end of June each year. This makes

2005 a pre-treatment period and childbirth in early 2006 is the result of fertility de-

cisions before or just around the introduction of paid maternal leave legislation in

July 2005.
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